Доклад на тему сцепленное наследование генов и кроссинговер

Сцепленное наследование

Третий закон Менделя гласит о независимом комбинировании признаков, что может иметь место только при условии, что гены, контролирующие реализацию этих признаков, располагаются в различных парах гомологичных хромосом. Таким образом, у каждого растения число генов, которые могут независимо сочетаться в мейозе, ограничено количеством пар хромосом. Но в каждом организме количество генов значительно больше числа хромосом.

К примеру, у кукурузы известно более 500 генов, у мухи – более одной тысячи, у человека – несколько тысяч генов, а количество хромосом у них 10, 4 и 23 пары соответственно. На основании этих наблюдений ученые установили, что в каждой хромосоме заключено множество генов. Те гены, которые находятся в одной хромосоме, формируют группу сцепления и наследуются вместе.

Эксперименты Т. Моргана

Сочетанному наследованию генов Т.Морган дал название сцепленное наследование. Количество групп сцепления равно гаплоидному набору хромосом.

Тип наследования сцепленных генов имеет отличия от общих принципов наследования генов, находящихся в различных парах гомологичных хромосом. Например, если в случае независимого комбинирования дигибрид АаВb дает 4 вида гамет (АА, Аb,aB,ab) в равных соотношениях, то аналогичный дигибрид АаВb при сцепленных генах образует только два вида гамет AB и ab в одинаковых количествах, копирующие сочетание генов в хромосоме родителя.

В ходе экспериментов было выяснено, что помимо стандартных гамет при сцепленном наследовании появляются и другие – Ab и aB – с новыми сочетаниями генов, которые отличаются от родительской гаметы. Предпосылкой появления новых гамет служит обмен участками гомологичных хромосом, или кроссинговер.

Кроссинговер имеет место в профазе первого мейотического деления в период конъюгации гомологичных хромосом. При этом участки двух хромосом могут перекрещиваться и совершать обмен своими частями. В итоге появляются абсолютно новые хромосомы, включающие участки (гены) обоих родительских хромосом. Экземпляры растений, которые получаются из новообразованных гамет с новой комбинацией аллелей, называются кроссинговерными (рекомбинантными).

Вероятность (процент) перекреста между двумя генами, находящимися в одной хромосоме, прямо пропорциональна длине отрезка между ними. Чем ближе расположены гены по отношению друг к другу, тем реже отмечается между ними кроссинговер. Если гены находятся относительно далеко друг от друга, вероятность расхождения их по двум разным гомологичным хромосомам в результате кроссинговера резко увеличивается.

Сила сцепления генов определяется расстоянием между ними и определяется в морганидах, или в процентах рекомбинации (кроссинговера). Один сантиморган – это генетическое расстояние, на котором кроссинговер возможен с вероятностью в 1%. Есть гены с высоким процентом сцепления и те, где сцепление почти не происходит. Но при сцепленном наследовании величина кроссинговера не может быть выше 50%. В том случае, если она выше, происходит свободное комбинирование между парами аллелей – процесс, аналогичный независимому наследованию.

Биологическое значение кроссинговера невозможно переоценить. Генетическая рекомбинация дает возможность производить новые, не существовавшие ранее комбинации генов. Это позволяет обеспечить увеличение выживаемости организмов в ходе эволюции.

Сцепленное наследование генов (отклонения от законов Менделя)

Многочисленные гене­тические опыты на различных организмах в большинстве случаев подтверди­ли законы Менделя о наследовании признаков. В то же время были получены и такие результаты, которые свидетельствовали об отклонениях от менделевских законов. Особенно это касалось третьего закона Менделя — о незави­симом наследовании генов. Оказалось, что в отличие от первого и второго за­конов Менделя, которые справедливы в большинстве случаев, третий спра­ведлив лишь тогда, когда исследуемые гены расположены в разных парах гомологичных хромосом.

На основе наблюдаемых отклонений Т. Х. Морган пришёл к выводу о сцепленном наследовании генов. В экспериментах с мушкой дрозофилой было обнаружено большое число примеров сцепленного наследования генов.

Сцепление генов явление, в основе которого лежит локализация генов в одной хромосоме.

Оно выражается в том, что аллели сцепленных генов, находящиеся в одной группе сцепления, имеют тенденцию наследоваться совместно. Сцепление доминантных (или рецессивных) аллелей друг с другом называют фазой сцепле­ния, а сцепление доминантных аллелей с рецессивными — фазой отталкивания. В обоих случаях сцепление генов приводит к более низкой частоте появления осо­бей с иными («неродительскими») сочетаниями признаков, чем ожидается при не­зависимом наследовании признаков.

Различают неполное и полное сцепление генов. Неполное сцепление является ре­зультатом кроссинговера (перекреста) между сцепленными генами, тогда как пол­ное сцепление возможно лишь в случаях, когда кроссинговер не происходит. Материал с сайта http://doklad-referat.ru

Разные пары генов в пределах одной группы сцепления характеризуют­ся различной степенью сцепления в зависимости от расстояния между ними. Чем больше расстояние между генами в хромосоме, тем меньше сила сцепле­ния между ними и, следовательно, чаще образуются путём кроссинговера рекомбинативные типы гамет. Изучив явление сцепления генов и кроссинго­вер, можно построить генетические карты организмов. Генетической кар­той хромосомы называют схему взаимного расположения генов.

Изучение сцепления генов и сцепленного наследования признаков по­служило мощным толчком создания теории кроссинговера и стало одним из важных подтверждений хромосомной теории наследственности.

Сцепленное наследование генов и кроссинговер

На уроке мы рассмотрим пару генов, наследование которых не подчиняется законам Менделя, узнаем, что такое кроссинговер и сцепленное наследование генов, поговорим об их особенностях.

Сцепленное наследование генов

После от­кры­тия мен­де­лев­ских за­ко­но­мер­но­стей уче­ные об­ра­ти­ли вни­ма­ние на то, что су­ще­ству­ют такие пары генов, на­сле­до­ва­ние ко­то­рых не под­чи­ня­ет­ся за­ко­но­мер­но­стям Мен­де­ля.

Мен­дель по­ла­гал, что у ди­ге­те­ро­зи­гот АаВв (рис. 1) об­ра­зу­ет­ся 4 типа гамет: АВ, Ав, аВ и ав.

Рис. 1. Геном АаВв (Источник)

Об­ра­зо­ва­ние этих гамет рав­но­ве­ро­ят­но, что и легло в ос­но­ву от­кры­тия тре­тье­го за­ко­на Мен­де­ля – за­ко­на неза­ви­си­мо­го рас­щеп­ле­ния при­зна­ков. Од­на­ко в ходе ряда экс­пе­ри­мен­тов уче­ные уста­но­ви­ли, что су­ще­ству­ют такие пары при­зна­ков, у ко­то­рых два типа гамет встре­ча­ют­ся чаще, чем дру­гие два типа гамет.

Рас­смот­рим это на кон­крет­ном при­ме­ре (рис. 2).

Рис. 2. Мушка дрозофила (Источник)

У ма­лень­ких пло­до­вых мушек дро­зо­фил – из­люб­лен­но­го объ­ек­та ге­не­ти­ков – ген А от­ве­ча­ет за серое тело, ре­цес­сив­ный ген а – за чер­ную окрас­ку тела, до­ми­нант­ный ген В – за раз­ви­тие длин­ных кры­льев, а ре­цес­сив­ный ген в – за нераз­ви­тые кры­лья, то есть кры­лья оста­ют­ся в за­ча­точ­ном со­сто­я­нии.

При скре­щи­ва­нии двух ге­те­ро­зи­гот, ко­то­рые имеют серое тело, длин­ные кры­лья и ге­но­ти­пы АаВв, в пер­вом по­ко­ле­нии по­лу­ча­ют три тела, име­ю­щих серое тело и длин­ные кры­лья, а также один ор­га­низм, име­ю­щий чер­ное тело и за­ча­точ­ные кры­лья (рис. 3).

Рис. 3. Скрещивание гетерозигот АаВв (Источник)

В даль­ней­шем ге­не­ти­ки об­ра­ти­ли вни­ма­ние на то, что при­зна­ков в ор­га­низ­ме зна­чи­тель­но боль­ше, чем хро­мо­сом, в ко­то­рых эти при­зна­ки ло­ка­ли­зо­ва­ны. Они сде­ла­ли вывод о том, что, ви­ди­мо, в одной хро­мо­со­ме рас­по­ла­га­ет­ся боль­шое ко­ли­че­ство генов. Гены, рас­по­ло­жен­ные в одной хро­мо­со­ме, об­ра­зу­ют еди­ную груп­пу – сцеп­ле­ние, и на­сле­ду­ют­ся чаще всего вме­сте (рис. 4).

Рис. 4. Сцепленные гены (Источник)

Эта за­ко­но­мер­ность была уста­нов­ле­на аме­ри­кан­ским ге­не­ти­ком То­ма­сом Ген­том Мор­га­ном в на­ча­ле 20-х гг. про­шло­го века. Сле­до­ва­тель­но, если гены лежат в одной хро­мо­со­ме, зна­чит, и на­сле­до­вать­ся они будут вме­сте (рис. 5).

Рис. 5. Сцепленное наследование (Источник)

D – ген, обо­зна­ча­ю­щий серое тело; d – чер­ное тело; F – длин­ные кры­лья; f – за­ча­точ­ные кры­лья.

В ре­зуль­та­те та­ко­го скре­щи­ва­ния у нас по­лу­ча­ет­ся три ор­га­низ­ма, име­ю­щих серое тело и длин­ные кры­лья, и один ор­га­низм, име­ю­щий чер­ное тело и за­ча­точ­ные кры­лья.

Кроссинговер

Ге­не­ти­ки об­ра­ти­ли вни­ма­ние на то, что в потом­стве таких мушек все равно по­яв­ля­ют­ся ор­га­низ­мы с серым телом и за­ча­точ­ны­ми кры­лья­ми, а также с чер­ным телом и длин­ны­ми кры­лья­ми. Объ­яс­не­ние этому на­шлось при изу­че­нии де­ле­ния кле­ток – этот про­цесс носит на­зва­ние «мейоз».

В про­фа­зе 1 мей­о­за на­блю­да­ет­ся яв­ле­ние конъ­юга­ции или сбли­же­ния хро­мо­сом, за ко­то­рым может по­сле­до­вать крос­син­го­вер – обмен участ­ка­ми го­мо­ло­гич­ных хро­мо­сом (рис. 6).

Рис. 6. Про­цесс крос­син­го­вера (Источник)

В ре­зуль­та­те об­ра­зу­ют­ся крос­со­вер­ные га­ме­ты. Ор­га­низ­мы, ко­то­рые воз­ни­ка­ют в ре­зуль­та­те сли­я­ния таких крос­со­вер­ных гамет, носят на­зва­ние «ре­ком­би­нант­ные ор­га­низ­мы». Так как крос­син­го­вер про­ис­хо­дит не после каж­дой конъ­юга­ции, то и ко­ли­че­ство крос­со­вер­ных гамет зна­чи­тель­но мень­ше ко­ли­че­ства некрос­со­вер­ных гамет, со­от­но­ше­ние при­мер­но 20 к 80 %.

В ходе экс­пе­ри­мен­та То­ма­су Генту Мор­га­ну уда­лось до­ка­зать, что ча­сто­та крос­син­го­ве­ра между ге­на­ми прямо про­пор­ци­о­наль­на рас­сто­я­нию между ними в хро­мо­со­ме, то есть можно ска­зать, что чем даль­ше гены на­хо­дят­ся друг от друга в хро­мо­со­ме, тем чаще между ними про­ис­хо­дит крос­син­го­вер.

Это от­кры­тие поз­во­ли­ло ла­бо­ра­то­рии То­ма­са Мор­га­на раз­ра­бо­тать метод, поз­во­ля­ю­щий по­стро­ить хро­мо­сом­ные карты, то есть ука­зы­вать ме­сто­на­хож­де­ние генов в хро­мо­со­ме для раз­лич­ных ор­га­низ­мов.

Заключение

Хро­мо­сом­ные карты созданы прак­ти­че­ски для всех сель­ско­хо­зяй­ствен­но важ­ных жи­вот­ных и рас­те­ний, ра­бо­та в этом на­прав­ле­нии до сих пор про­дол­жа­ет­ся, хотя ге­не­ти­ки уже поль­зу­ют­ся не толь­ко ме­то­дом ги­бри­ди­за­ции, но и дру­ги­ми до­ступ­ны­ми им со­вре­мен­ны­ми ме­то­да­ми ге­не­ти­ки.

Список литературы

  1. Мамонтов С.Г., Захаров В.Б., Агафонова И.Б., Сонин Н.И. Биология. Общие закономерности. – Дрофа, 2009.
  2. Пономарева И.Н., Корнилова О.А., Чернова Н.М. Основы общей биологии. 9 класс: Учебник для учащихся 9 класса общеобразовательных учреждений/ Под ред. проф. И.Н. Пономаревой. – 2-е изд., перераб. – М.: Вентана-Граф, 2005
  3. Пасечник В.В., Каменский А.А., Криксунов Е.А. Биология. Введение в общую биологию и экологию: Учебник для 9 класса, 3-е изд., стереотип. – М.: Дрофа, 2002.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Домашнее задание

  1. Какие пары генов не подчиняются законам Менделя?
  2. В чем закономерность генов, лежащих в одной хромосоме?
  3. Что такое кроссинговер?

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Тема 4. Сцепление генов. Кроссинговер

Предположения о связи явления наследственности с хромосомами впервые были высказаны еще в конце XIX столетия. Особенно подробно эту идею развивал в своей теории “зародышевой плазмы” А. Вейсман (см. первую лекцию). Позже американский цитолог У. Сэттон обратил внимание на соответствие характера наследования признаков у одного из видов кузнечика поведению хромосом в процессе мейоза. Он сделал вывод о локализации наследственных факторов, определяющих эти признаки, в хромосомах и об ограниченности действия закона независимого комбинирования признаков, установленного Менделем. Он считал, что независимо могут комбинироваться только те признаки, наследственные факторы которых лежат в разных хромосомах. Поскольку количество признаков намного превышает количество пар хромосом, то многие признаки контролируются генами одной хромосомы, которые должны наследоваться совместно.

Первый случай совместного наследования в 1906 г. описали английские генетики У. Бэтсон и Р. Пеннет у душистого горошка (Lathyrus odoratus L.). Они скрестили две расы душистого горошка, различающиеся по двум признакам. Одна раса характеризовалась пурпурной окраской цветков и удлиненной формой пыльцы, другая — красной окраской и округлой формой. Оказалось, что пурпурная окраска полностью доминирует над красной, а удлиненная форма пыльцы над округлой. Каждая пара признаков в отдельности давала расщепление 3 : 1. Гибриды F1 от скрещивания растений этих двух рас наследовали доминантные признаки одного из родителей, т.е. имели пурпурные цветы и удлиненную пыльцу. Однако в F2 соотношение ожидаемых четырех фенотипов не укладывалось в формулу 9 : 3 : 3 : 1, характерную для независимого наследования. Основное отличие заключалось в том, что комбинации признаков, которыми характеризовались родители, встречались чаще, чем следует, в то время как новые сочетания проявлялись в количестве менее ожидаемого. Родительские фенотипы преобладали также в поколении от анализирующего скрещивания. Создавалось впечатление, что наследственные факторы, имевшиеся у родителей, в процессе наследования стремятся оставаться вместе. И, наоборот, факторы, вносимые разными родителями, как бы сопротивляются вхождению в одну гамету. Это явление ученые назвали “притяжением” и “отталкиванием” факторов. При использовании родителей с другими комбинациями этих признаков Бетсон и Пеннет получили такие же результаты.

В течение нескольких лет этот случай необычного наследования у душистого горошка считался отклонением от III закона Менделя. Объяснение ему было дано Т. Морганом и его коллегами, которые обнаружили много случаев подобного наследования признаков у дрозофилы. Согласно их выводам, преимущественная передача потомству исходных комбинаций признаков обусловлена тем, что определяющие их гены располагаются в одной хромосоме, т.е. физически соединены. Это явление было названо Морганом сцеплением генов. Он же дал объяснение неполному сцеплению, предположив, что оно является результатом кроссинговера — перекреста гомологичных хромосом, которые во время коньюгации в профазе мейоза обмениваются гомологичными участками. К такому заключению Морган пришел под влиянием данных голландского цитолога Ф. Янсенса (1909), изучавшего мейоз и обратившего внимание на характерные переплетения хромосом в профазе I, напоминавшие греческую букву c. Он назвал их хиазмами.

Морганом было проделано скрещивание на дрозофиле, которое стало генетическим доказательством наличия обмена генами. В качестве родительских форм он использовал две линии дрозофилы, различающиеся по двум парам признаков. Мухи одной линии имели серое тело (признак дикого типа) и редуцированные крылья (рецессивная мутация vestigal, vg), а мухи другой линии — черное тело (рецессивная мутация black, b) и нормальные крылья. Все гибриды F1 унаследовали доминантные признаки дикого типа — серое тело и нормальные крылья. Далее Морган отступил от обычной схемы скрещивания и вместо F2 получал поколение от скрещивания гибридов F1 с гомозиготными рецессивными особями, т.е. проводил анализирующее скрещивание. Таким способом он пытался точно определить, какие типы гамет и в каком количестве образуют гибриды F1. Были проведены два типа анализирующих скрещиваний: в первом из них гибридные самки скрещивались с гомозиготными рецессивными самцами (bbvgvg), во втором — гомозиготные рецессивные самки скрещивались с гибридными самцами.

Результаты двух анализирующих скрещиваний были разными. Как видно из схемы, Fа прямого скрещивания состоит из четырех фенотипических классов. Это говорит о том, что гибридная самка образует четыре типа гамет, слияние которых с единственной гаметой гомозиготного рецессива приводит к проявлению в Fа четырех разных комбинаций признаков. Два класса, которые повторяют по фенотипу родительские особи, Морган назвал некроссоверными, так как они произошли от слияния гамет, сформированных без участия кроссинговера и обмена генами. По количеству эти классы являются более многочисленными (83%), чем два других класса — кроссоверные (17%), характеризующиеся новыми сочетаниями признаков. Их появление свидетельствовало о том, что в мейозе при образовании части гамет самки идет процесс кроссинговера и осуществляется обмен генами. Такой тип наследования получил название неполного сцепления.

Иные результаты были получены в обратном скрещивании, где анализировался генотип гибридного самца. В Fа в равных количествах были представлены только два класса особей, повторяющие по фенотипу родительские формы. Это говорило о том, что гибридный самец в отличие от гибридной самки формировал с равной частотой гаметы двух типов с исходным сочетанием генов. Подобная ситуация могла иметь место только при условии отсутствия кроссинговера и, следовательно, обмена генами при образовании гамет у самца. Этот тип наследования был назван Морганом полным сцеплением. Позже было установлено, что кроссинговер при образовании гамет у самца, как правило, отсутствует.

Перекрест хромосом происходит в профазе I мейоза, и поэтому его называют мейотическим. Он осуществляется после того как гомологичные хромосомы на стадии зиготены соединяются в пары, образуя биваленты. В профазе I каждая хромосома представлена двумя сестринскими хроматидами, и перекрест происходит не между хромосомами, а между хроматидами гомологов. Кроссинговер можно обнаружить лишь в том случае, если гены находятся в гетерозиготном состоянии (BbVv). При гомозиготном состоянии генов кроссинговер генетически выявить нельзя, так как обмен идентичными генами не дает новых комбинаций на уровне фенотипа.

Коллега Т. Моргана А. Стертевант высказал предположение, что частота кроссинговера зависит от расстояния между генами, и полное сцепление обнаруживают гены, расположенные очень близко друг к другу. На этом основании он предложил использовать этот показатель для определения расстояния между генами. Частота кроссинговера определяется на основе результатов анализирующего скрещивания. Процент кроссинговера рассчитывается как отношение числа кроссоверных особей Fа (т.е. особей с новыми сочетаниями родительских признаков) к общему количеству особей этого потомства (в %). 1% кроссинговера принят за единицу расстояния между генами, которая позже в честь Т. Моргана была названа санти-морганидой (или просто морганидой). Частота перекреста отражает силу сцепления генов: чем меньше частота кроссинговера, тем больше сила сцепления и наоборот.

Исследование явления сцепления генов позволило Моргану сформулировать главную генетическую теорию — хромосомную теорию наследственности. Ее основные положения выглядят следующим образом:

  1. Каждый вид живых организмов характеризуется специфическим набором хромосом — кариотипом. Специфичность кариотипа определяется числом и морфологией хромосом.
  2. Хромосомы являются материальными носителями наследственности и каждая из них играет определенную роль в развитии особи.
  3. В хромосоме в линейном порядке располагаются гены. Ген — это участок хромосомы, отвечающий за развитие признака.
  4. Гены одной хромосомы образуют единую группу сцепления и стремятся наследоваться совместно. Количество групп сцепления равно гаплоидному набору хромосом, так как гомологичные хромосомы представляют одну и ту же группу сцепления.
  5. Сцепление генов может быть полным (100%-ное совместное наследование) или неполным. Неполное сцепление генов является результатом кроссинговера и обмена участками гомологичных хромосом.
  6. Частота кроссинговера зависит от расстояния между генами на хромосоме: чем дальше лежат гены друг от друга, тем чаще между ними образуется перекрест.

Перекрест, происходящий в одном участке хромосомы, называют одинарным перекрестом. Поскольку хромосома представляет собой линейную структуру значительной протяженности, то в ней одновременно могут происходить несколько перекрестов: двойные, тройные и множественные.

Если кроссинговер идет одновременно в двух соседних участках хромосомы, то частота двойных перекрестов оказывается ниже той, которую можно рассчитать на основании частот одинарных перекрестов. Особенно заметное снижение наблюдается при очень близком расположении генов. В этом случае кроссинговер в одном участке механически препятствует кроссинговеру в другом участке. Это явление получило название интерференции. С увеличением расстояния между генами величина интерференции падает. Эффект интерференции измеряется отношением фактической частоты двойных перекрестов к теоретически ожидаемой их частоте, в случае их полной независимости друг от друга. Это соотношение называется коинциденцией. Фактическая частота двойных перекрестов устанавливается экспериментально в ходе гибридологического анализа по частоте фенотипического класса двойных кроссоверов. Теоретическая частота, согласно закону вероятности, равна произведению частот двух одинарных перекрестов. Например, если в хромосоме имеются три гена а, b и с и кроссинговер между а и b идет с частотой 15%, а между b и с — с частотой 9%, то в случае отсутствия интерференции частота двойного кроссинговера равнялась бы 0,15 x 0,09 = 1,35%. При фактической частоте 0,9%, величина коинциденции выражается отношением и равняется:

Таким образом, в данном случае из-за интерференции реализовалось только 69% двойных перекрестов.

Среди 8 фенотипических классов, образующихся в Fа при наличии трех пар сцепленных признаков два класса двойных кроссоверов являются самыми малочисленными с учетом явления интерференции и в соответствии с законом вероятности.

Существование множественных перекрестов приводит к увеличению изменчивости гибридного потомства, так как благодаря им возрастает число генных комбинаций и, соответственно, число типов гамет у гибридов.

На определении частот одинарных, двойных, тройных и т.д. перекрестов основан принцип построения генетических карт. Генетическая карта — это схема, отражающая порядок расположения генов в хромосоме. За основу расчета расстояния между генами берется процент одинарного кроссинговера между ними. К нему добавляются поправки на величину двойного и более сложных перекрестов, которые уточняют расчет. Если мы имеем три гена, то порядок их взаиморасположения в хромосоме определяется на основании фенотипа класса двойных кроссоверов. При двойном кроссинговере идет обмен средним геном. Следовательно, признак, по которому двойные кроссоверы отличаются от родительских особей, определяется этим геном. Например, если гомозиготная серая длиннокрылая самка дрозофилы с красными глазами (все признаки дикого типа доминантные) скрещивалась с гомозиготным темным (рецессивная мутация black) самцом с редуцированными крыльями (рецессивная мутация ) и яркими глазами (рецессивная мутация cinnabar), и в Fа самыми малочисленными парными классами (т.е. двойными кроссоверами) были серые мухи с яркими глазами и длинными крыльями и черные с красными глазами и редуцированными крыльями, то, следовательно, ген, контролирующий окраску глаз, является средним. Отрезок карты с этими тремя генами будет выглядеть следующим образом:

На генетической карте любой хромосомы отсчет расстояния начинается с нулевой точки — локуса первого гена — и отмечается не расстояние между двумя соседними генами, а расстояние в морганидах каждого последующего гена от нулевой точки.

Генетические карты составлены только для хорошо изученных в генетическом отношении объектов, как прокариотических, так и эукариотических, таких как, например, фаг l, E. coli, дрозофила, мышь, кукуруза, человек. Они являются плодом огромного и систематического труда многих исследователей. Наличие таких карт позволяет предсказывать характер наследования изучаемых признаков, а при селекционной работе — вести сознательный подбор пар для скрещивания.

Генетические доказательства наличия кроссинговера, полученные в опытах Т. Моргана и его коллег, получили прямое подтверждение на цитологическом уровне в 30-х гг. в работах К. Штерна на дрозофиле и Б. МакКлинток и Г. Крейтона на кукурузе. Им удалось сконструировать гетероморфную пару хромосом (пара Х-хромосом у дрозофилы и IV пара аутосом у кукурузы), в которой гомологи имели различную форму. Обмен участками между ними приводил к образованию разных цитологических типов этой пары хромосом, которые можно было идентифицировать цитологически (под микроскопом). Благодаря генетическому маркированию каждому цитологическому типу бивалента соответствовал определенный фенотипический класс потомства.

В 30-х гг. в слюнных железах дрозофилы Т. Пайнтером были обнаружены гигантские, или политенные, хромосомы. Благодаря своим крупным размерам и четкой структурной организации они стали основным объектом цитогенетических исследований. Каждой хромосоме свойствен специфический рисунок из темных полос (дисков) и светлых промежутков (междисков), соответствующих гетерохроматическим и эухроматическим участкам хромосомы. Постоянство этой внутренней структуры гигантских хромосом дало возможность проверить, насколько порядок генов, установленный на основании определения частоты кроссинговера, отражает действительное расположение генов в хромосоме. С этой целью проводится сравнение структуры нормальной хромосомы и хромосомы, несущей хромосомную мутацию, например выпадение или удвоение участка хромосомы. Такое сравнение полностью подтверждает соответствие порядка расположения генов на генетических картах их расположению на хромосомах. Графическое изображение гигантской хромосомы с указанием локализации генов в определенных ее участках называется цитологической картой.

Явление кроссинговера обнаружено не только в половых клетках, но и в соматических. Обычно гомологичные хромосомы в профазе митоза не коньюгируют и располагаются отдельно друг от друга. Однако еще в 1916 г. исследователям иногда удавалось наблюдать картины синапсиса гомологичных хромосом в митотической профазе с образованием фигур перекреста (хиазм). Это явление получило название соматического, или митотического, кроссинговера. На фенотипическом уровне о нем судят по мозаичному изменению признаков в некоторых участках тела. Так, у самок дрозофилы дикого типа, гетерозиготных по рецессивным мутациям yellow (желтое тело) и singed (опаленные щетинки), в результате соматического перекреста могут появиться пятна с рецессивными признаками. При этом, в зависимости от того, где произойдет перекрест: между указанными выше генами или за их пределами, образуется либо пятно с обоими мутантными признаками, либо с одним из них.

Обычно при кроссинговере идет обмен одинаковыми по размеру гомологичными участками хромосом. Но изредка возможны несимметричные разрывы в хроматидах и обмен неравными участками, т.е. неравный кроссинговер. В результате такого обмена оба аллеля какого-либо гена могут оказаться в одной хромосоме (дупликация), а в другом гомологе возникает его нехватка. Подобное изменение обнаружено в Х-хромосоме дрозофилы в участке, содержащим доминантную мутацию Bar (В), определяющую развитие полосковидных глаз с уменьшенным числом фасеток (у гомозигот 70 вместо 700). Дупликация этого гена в результате неравного кроссинговера приводит к дальнейшей редукции числа фасеток (до 25). Цитологически неравный кроссинговер легко выявляется по изменению рисунка гигантских хромосом.

Перекрест хромосом, как сложный физиологический процесс, подвержен сильному влиянию внешних и внутренних факторов. Большое влияние на частоту кроссинговера оказывает структура хромосомы, в первую очередь наличие в ней крупных блоков гетерохроматина. Установлено, что у дрозофилы кроссинговер редко идет вблизи центромеры и на концах хромосом, что обусловлено присутствием прицентромерного и теломерного гетерохроматина. Плотная спирализация гетерохроматических участков хромосомы уменьшает расстояние между генами и препятствует их обмену. На частоту кроссинговера влияют различные хромосомные перестройки и генные мутации. При наличии в хромосоме нескольких инверсий они могут стать “запирателями” перекреста. У кукурузы обнаружены гены, нарушающие процесс коньюгации и тем самым препятствующие кроссинговеру.

У большинства изученных животных и растений мейотический перекрест осуществляется у обоих полов. Но есть отдельные виды животных, у которых кроссинговер идет только у гомогаметного пола, а у гетерогаметного пола отсутствует. Причем кроссинговер не происходит не только в половых хромосомах, но и в аутосомах. Подобная ситуация наблюдается у самцов дрозофилы и самок шелкопряда с кариотипом ХY. Однако у многих видов млекопитающих, птиц, рыб и насекомых гетерогаметность пола не сказывается на процессе кроссинговера.

На процесс кроссинговера влияет функциональное состояние организма. Установлено, что частота перекреста зависит от возраста, как и уровень аномалий в мейозе. С возрастом происходит снижение активности ферментативных систем, в том числе и тех, которые регулируют процесс обмена участками хромосом.

Частоту перекреста можно повысить или понизить влиянием на организм различных факторов внешней среды, таких как высокая и низкая температура, ионизирующие излучения, дегидратация, изменение концентрации ионов кальция, магния и др. в среде, действием химических агентов и т.п. В частности, установлено, что у дрозофилы частота кроссинговера возрастает с повышением температуры.

В заключение следует отметить, что процесс кроссинговера очень важен с эволюционной точки зрения. Он является механизмом, с помощью которого осуществляется генетическая рекомбинация и создаются новые благоприятные генотипы. Комбинативная изменчивость, наряду с мутационной, является основой для создания новых форм.

Перейти к чтению других тем книги «Генетика и селекция. Теория. Задания. Ответы»:

Доклад на тему сцепленное наследование генов и кроссинговер

Изменчивость – это свойство живых организмов существовать в различных формах (вариантах).

txt fb2 ePub html

на телефон придет ссылка на файл выбранного формата

Шпаргалки на телефон — незаменимая вещь при сдаче экзаменов, подготовке к контрольным работам и т.д. Благодаря нашему сервису вы получаете возможность скачать на телефон шпаргалки по биологии. Все шпаргалки представлены в популярных форматах fb2, txt, ePub , html, а также существует версия java шпаргалки в виде удобного приложения для мобильного телефона, которые можно скачать за символическую плату. Достаточно скачать шпаргалки по биологии — и никакой экзамен вам не страшен!

Не нашли что искали?

Если вам нужен индивидуальный подбор или работа на заказа — воспользуйтесь этой формой.

1. Генеалогический метод, или метод анализа родословных, включает следующие этапы:

Смотрите еще:

  • Забрали права в сампе Обновление обыска и /q от ареста Перейти к странице Frank Uilson Давно играю в СРП и бывает случай когда. Коп сливающий акк сливает твои лицензии. После перестрелки с копом если ты умрешь то в КПЗ забирают лицензию. Хотя стоп ты же умер. Первый вариант: Дать […]
  • Российская газета уголовный кодекс рф Федеральный закон от 23 апреля 2018 г. N 111-ФЗ "О внесении изменений в Уголовный кодекс Российской Федерации" Документ является поправкой к Комментарии Российской Газеты Принят Государственной Думой 10 апреля 2018 года Одобрен Советом Федерации 18 апреля 2018 […]
  • Мировой суд ленинского района г оренбурга 2 участок судебный участок №2 мирового судьи Ленинского района Оренбурга С 20 октября водители-нарушители смогут получить права назад только после уплаты всех штрафов на включение в кадровый резерв для замещения должностей государственной гражданской службы Оренбургской области […]
  • Фз от 27072006 152-фз ст 23 Федеральный закон от 27 июля 2006 г. N 152-ФЗ "О персональных данных" Федеральный закон от 27 июля 2006 г. N 152-ФЗ"О персональных данных" С изменениями и дополнениями от: 25 ноября, 27 декабря 2009 г., 28 июня, 27 июля, 29 ноября, 23 декабря 2010 г., 4 июня 2011 […]
  • Наказание по ст12154 коап Наказание по ст12154 коап Постановлением по делу об административном правонарушении от 30.11.2007г. мировой судья судебного участка № 333 района Тимирязевский г.Москвы Норкина А.И. признала К***** Алексея Владимировича виновным в совершении административного […]
  • Судебное дело о защите прав потребителей В какой суд и в какой срок обращаться за защитой прав потребителей? Юридический Яндекс Дзен! Там наши особенные юридические материалы в удобном и красивом формате. Подпишитесь прямо сейчас. За защитой своих прав потребители вправе обратиться в суд (п. 1 ст. 17 Закона […]
  • Деловая репутация юридического лица пленум ПОСТАНОВЛЕНИЕ ПЛЕНУМА ВЕРХОВНОГО СУДА РОССИЙСКОЙ ФЕДЕРАЦИИ от 24 февраля 2005 года №3 О судебной практике по делам о защите чести и достоинства граждан, а также деловой репутации граждан и юридических лиц В соответствии со статьей 23 Конституции Российской Федерации […]
  • Коап рф 138 Решение Саратовского областного суда от 23 августа 2013 г. по делу N 21-509 (ключевые темы: государственная инспекция труда - увольнение - удержания из заработной платы - компенсации за неиспользованный отпуск - авансы выданные) Решение Саратовского областного суда от […]